3.669 \(\int \frac{\sqrt [3]{a+b x^2}}{x} \, dx\)

Optimal. Leaf size=101 \[ \frac{3}{2} \sqrt [3]{a+b x^2}+\frac{3}{4} \sqrt [3]{a} \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )-\frac{1}{2} \sqrt{3} \sqrt [3]{a} \tan ^{-1}\left (\frac{2 \sqrt [3]{a+b x^2}+\sqrt [3]{a}}{\sqrt{3} \sqrt [3]{a}}\right )-\frac{1}{2} \sqrt [3]{a} \log (x) \]

[Out]

(3*(a + b*x^2)^(1/3))/2 - (Sqrt[3]*a^(1/3)*ArcTan[(a^(1/3) + 2*(a + b*x^2)^(1/3)
)/(Sqrt[3]*a^(1/3))])/2 - (a^(1/3)*Log[x])/2 + (3*a^(1/3)*Log[a^(1/3) - (a + b*x
^2)^(1/3)])/4

_______________________________________________________________________________________

Rubi [A]  time = 0.189221, antiderivative size = 101, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4 \[ \frac{3}{2} \sqrt [3]{a+b x^2}+\frac{3}{4} \sqrt [3]{a} \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )-\frac{1}{2} \sqrt{3} \sqrt [3]{a} \tan ^{-1}\left (\frac{2 \sqrt [3]{a+b x^2}+\sqrt [3]{a}}{\sqrt{3} \sqrt [3]{a}}\right )-\frac{1}{2} \sqrt [3]{a} \log (x) \]

Antiderivative was successfully verified.

[In]  Int[(a + b*x^2)^(1/3)/x,x]

[Out]

(3*(a + b*x^2)^(1/3))/2 - (Sqrt[3]*a^(1/3)*ArcTan[(a^(1/3) + 2*(a + b*x^2)^(1/3)
)/(Sqrt[3]*a^(1/3))])/2 - (a^(1/3)*Log[x])/2 + (3*a^(1/3)*Log[a^(1/3) - (a + b*x
^2)^(1/3)])/4

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 10.4473, size = 94, normalized size = 0.93 \[ - \frac{\sqrt [3]{a} \log{\left (x^{2} \right )}}{4} + \frac{3 \sqrt [3]{a} \log{\left (\sqrt [3]{a} - \sqrt [3]{a + b x^{2}} \right )}}{4} - \frac{\sqrt{3} \sqrt [3]{a} \operatorname{atan}{\left (\frac{\sqrt{3} \left (\frac{\sqrt [3]{a}}{3} + \frac{2 \sqrt [3]{a + b x^{2}}}{3}\right )}{\sqrt [3]{a}} \right )}}{2} + \frac{3 \sqrt [3]{a + b x^{2}}}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((b*x**2+a)**(1/3)/x,x)

[Out]

-a**(1/3)*log(x**2)/4 + 3*a**(1/3)*log(a**(1/3) - (a + b*x**2)**(1/3))/4 - sqrt(
3)*a**(1/3)*atan(sqrt(3)*(a**(1/3)/3 + 2*(a + b*x**2)**(1/3)/3)/a**(1/3))/2 + 3*
(a + b*x**2)**(1/3)/2

_______________________________________________________________________________________

Mathematica [C]  time = 0.0455867, size = 61, normalized size = 0.6 \[ \frac{6 \left (a+b x^2\right )-3 a \left (\frac{a}{b x^2}+1\right )^{2/3} \, _2F_1\left (\frac{2}{3},\frac{2}{3};\frac{5}{3};-\frac{a}{b x^2}\right )}{4 \left (a+b x^2\right )^{2/3}} \]

Antiderivative was successfully verified.

[In]  Integrate[(a + b*x^2)^(1/3)/x,x]

[Out]

(6*(a + b*x^2) - 3*a*(1 + a/(b*x^2))^(2/3)*Hypergeometric2F1[2/3, 2/3, 5/3, -(a/
(b*x^2))])/(4*(a + b*x^2)^(2/3))

_______________________________________________________________________________________

Maple [F]  time = 0.046, size = 0, normalized size = 0. \[ \int{\frac{1}{x}\sqrt [3]{b{x}^{2}+a}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((b*x^2+a)^(1/3)/x,x)

[Out]

int((b*x^2+a)^(1/3)/x,x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^(1/3)/x,x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.214155, size = 131, normalized size = 1.3 \[ -\frac{1}{2} \, \sqrt{3} a^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \,{\left (b x^{2} + a\right )}^{\frac{1}{3}} + a^{\frac{1}{3}}\right )}}{3 \, a^{\frac{1}{3}}}\right ) - \frac{1}{4} \, a^{\frac{1}{3}} \log \left ({\left (b x^{2} + a\right )}^{\frac{2}{3}} +{\left (b x^{2} + a\right )}^{\frac{1}{3}} a^{\frac{1}{3}} + a^{\frac{2}{3}}\right ) + \frac{1}{2} \, a^{\frac{1}{3}} \log \left ({\left (b x^{2} + a\right )}^{\frac{1}{3}} - a^{\frac{1}{3}}\right ) + \frac{3}{2} \,{\left (b x^{2} + a\right )}^{\frac{1}{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^(1/3)/x,x, algorithm="fricas")

[Out]

-1/2*sqrt(3)*a^(1/3)*arctan(1/3*sqrt(3)*(2*(b*x^2 + a)^(1/3) + a^(1/3))/a^(1/3))
 - 1/4*a^(1/3)*log((b*x^2 + a)^(2/3) + (b*x^2 + a)^(1/3)*a^(1/3) + a^(2/3)) + 1/
2*a^(1/3)*log((b*x^2 + a)^(1/3) - a^(1/3)) + 3/2*(b*x^2 + a)^(1/3)

_______________________________________________________________________________________

Sympy [A]  time = 3.84707, size = 46, normalized size = 0.46 \[ - \frac{\sqrt [3]{b} x^{\frac{2}{3}} \Gamma \left (- \frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{3}, - \frac{1}{3} \\ \frac{2}{3} \end{matrix}\middle |{\frac{a e^{i \pi }}{b x^{2}}} \right )}}{2 \Gamma \left (\frac{2}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x**2+a)**(1/3)/x,x)

[Out]

-b**(1/3)*x**(2/3)*gamma(-1/3)*hyper((-1/3, -1/3), (2/3,), a*exp_polar(I*pi)/(b*
x**2))/(2*gamma(2/3))

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.574102, size = 132, normalized size = 1.31 \[ -\frac{1}{2} \, \sqrt{3} a^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \,{\left (b x^{2} + a\right )}^{\frac{1}{3}} + a^{\frac{1}{3}}\right )}}{3 \, a^{\frac{1}{3}}}\right ) - \frac{1}{4} \, a^{\frac{1}{3}}{\rm ln}\left ({\left (b x^{2} + a\right )}^{\frac{2}{3}} +{\left (b x^{2} + a\right )}^{\frac{1}{3}} a^{\frac{1}{3}} + a^{\frac{2}{3}}\right ) + \frac{1}{2} \, a^{\frac{1}{3}}{\rm ln}\left ({\left |{\left (b x^{2} + a\right )}^{\frac{1}{3}} - a^{\frac{1}{3}} \right |}\right ) + \frac{3}{2} \,{\left (b x^{2} + a\right )}^{\frac{1}{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^(1/3)/x,x, algorithm="giac")

[Out]

-1/2*sqrt(3)*a^(1/3)*arctan(1/3*sqrt(3)*(2*(b*x^2 + a)^(1/3) + a^(1/3))/a^(1/3))
 - 1/4*a^(1/3)*ln((b*x^2 + a)^(2/3) + (b*x^2 + a)^(1/3)*a^(1/3) + a^(2/3)) + 1/2
*a^(1/3)*ln(abs((b*x^2 + a)^(1/3) - a^(1/3))) + 3/2*(b*x^2 + a)^(1/3)